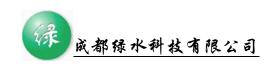


成都绿水科技有限公司 地址:成都市高新区九兴大道 6 号高发大厦 B 栋 317-319 室 邮编:610041 电话:028-85130135 传真:028-85195416 E-mail: jane1984@cd-greenwater.com


Http://www.cd-greenwater.com

迁安中化煤化工有限责任公司 焦化污水处理曝气系统

GW 射流器运行报告

成都绿水科技有限公司 2010-6-3

迁安中化煤化工有限公司焦化厂焦化污水处理采用的是生化法处理。生化处理系统分两组并联运行,每组生化曝气系统分两级曝气,分为 O1 曝气池、O2 曝气池。现曝气系统采用的是鼓风微孔曝气方式,并随着时间的运行,微孔曝气管堵塞、老化开裂,氧利用率下降,抗冲击负荷能力弱,导致曝气池内溶解氧、出水水质达不到设计目标,需定期停水放水检修。

迁安中化煤化工有限公司针对以上情况,与成都绿水科技有限公司签订技术协议,向成都绿水科技有限公司采购了1套GW3600射流器,带24个N40增效喷嘴在西01曝气池第1廊道进行了改造。

1、未进行 GW 射流曝气改造前的水处理效果分析

(1) 处理水量和水质

GW 射流器改造前的处理水量和监测数据分析表。

日期	总处理水量	指标: COD (mg/L)		
口別	(m3/h)	调节池出水	01曝气池出水	02曝气池出水
4月14日	110	4450	1040	405. 4
4月15日	110	4269	1033	405. 4
4月16日	110	3845	1278	490
4月17日	110	5580	1910	725
4月18日	110	4504	1049	433. 3
4月19日	110	5426	983	433. 3
4月20日	110	4803	971. 7	400
4月21日	110	4665	1046	565
4月22日	110	4192	933	485. 8
4月23日	110	4775	985. 9	599. 5
4月24日	110	4205	892	624. 5
4月25日	110	4971	949. 5	656. 1
4月26日	110	4464	974. 5	594. 6
5月1日	110	5689	907. 2	589. 7
5月2日	110	4346	941. 4	596. 2
5月3日	110	4914	933. 4	561. 1
5月4日	110	5232	915	474. 7
平均处理水量 水质	110	4725.3	1043. 7	531. 7

成都绿水科技有限公司 地址:成都市高新区九兴大道 6 号高发大厦 B 栋 317-319 室 邮编:610041 电话:028-85130135 传真:028-85195416

E-mail: jane1984@cd-greenwater.com Http://www.cd-greenwater.com

(2) 水池有效容积

单元	单个廊道尺寸(m)	单组总有效容积(m³)	备注
01 曝气池	$35 \times 4.5 \times 5.5$	2363	每组3个廊道,共6个廊道
02 曝气池	$35 \times 4.5 \times 5.5$	788	每组1个廊道,共2个廊道

(3) 工艺运行参数

MLVSS: 3500mg/L、溶解氧浓度 2mg/L、设计水温 30℃。

(4) 需氧量计算

计算生化系统总实际需氧量见下表

单元	处理水量(m³/h)	实际需氧量 (kg (0 ₂) /h)	总实际需氧量(kg(0 ₂)/h)	
01 曝气池	110	282		
02 曝气池	110	41	282+41=323	

(5) 现有鼓风机供氧量、氧利用率分析

现有风机风量: $50\text{m}^3/\text{min}$,风压 63kPa,装机功率 75kw,共 4 台,四台全开;在风机四台全开的条件下,生化系统鼓风机总鼓风量为 $50\times60\times4=12000\text{m}^3/\text{h}$,供氧量为 12000×0 . 21×1 . 4=3528 kg $(0_2)/\text{h}$,结合 (4) 计算的实际需氧量,现有曝气系统的曝气设备氧利用率为 $\frac{323}{3528}=9.15\%$ 。

(6) 现有功耗及铭牌动力效率分析

总处理水量 110m3/h时,风机开 4 台,装机功率见下表

类别	装机功率(kw)	数量	总装机功率(kw)	实际铭牌动力效率 (kg(0₂)/kwh)
鼓风机	75	4	300	$\frac{323}{300} = 1.08$

2、 仅西 O1 池第 1 廊道改为 GW 射流曝气后的水处理效果分析

(1) 处理水量和水质

西 O1 池仅第 1 廊道改为 GW 射流器后的处理水量和监测数据分析表。

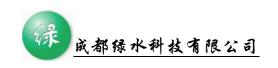
地址:成都市高新区九兴大道6号高发大厦 B 栋 317-319 室 邮编:610041 电话:028-85130135 传真:028-85195416 E-mail: jane1984@cd-greenwater.com

☐ #H	总处理水量	指标: COD (mg/L)			
日期	(m3/h)	调节池出水	01曝气池出水	02曝气池出水	
5月5日	110	5232	838.9	554.9	
5月6日	110	5014	816.4	499	
5月7日	110	3244	725. 5	332.2	
5月8日	110	3277	679. 9	304	
5月9日	110	3367	727.5	325.5	
5月10日	110	4517	617.9	399. 2	
平均处理水量 水质	110	4108. 5	734. 4	402. 5	

(2) 需氧量计算

实际需氧量计算结果见下表

单元	处理水量 (m³/h)	实际需氧量(kg (0 ₂) /h)	总实际需氧量(kg(0 ₂)/h)
01 曝气池	110	265	005 00 004
02 曝气池	110	29	265 + 29 = 294


(3) GW 射流器充氧量、氧利用率分析

GW射流器采用鼓风加压运行模式,在现有鼓风机风压 63kpa设计的条件下, GW射流器吸气量为 815m³/h, 根据现场运行测试,现有风机开 3 台,在风机三开 一备运行的条件下,生化系统鼓风机总鼓风量为 $50 \times 60 \times 3 = 9000 \text{m}^3/\text{h}$,其中:GW 射流器使用了 815m³/h空气量, 现有曝气设备使用了 9000-815=8185m³/h空气量, 按前面分析现有鼓风曝气设备氧利用率 9.15%计,现有鼓风曝气设备实际充氧量为 $8185 \times 0.21 \times 1.4 \times 9.15\% = 220.2 \text{kg}(0_2)/\text{h}$.

结合(2)计算得到的实际需氧量,GW射流曝气实际充氧量为294-220.2=73.8 $kg(0_2)/h$,GW射流曝气设备氧利用率为 $\frac{73.8}{815 \times 0.21 \times 1.4} = 30.8\%$ 。

(4) 仅西 O1 池第 1 廊道改为 GW 射流曝气后,第 1 廊道改造前后溶解氧分析

序号	测溶解氧位置	改造前值	技术要求	实际运行值
1	西01第1廊道进水端 1/4 处溶解氧 (mg/L)	0.15~0.5	1~1.5	1.3~2
2	西 01 第 1 廊道 1/2 处溶解氧(mg/L)	0.2~0.7	-	1.8~5
3	西01第1廊道出水端 1/2 处溶解氧 (mg/L)	0.5~1.5	_	1.3~4.5

(5) 仅西 O1 池第 1 廊道改为 GW 射流曝气后,整个曝气系统功耗及铭牌动 力效率分析

总处理水量 110m³/h时,风机开 3 台,装机功率见下表:

类别	装机功率(kw)	数 量	总装机功率 (kw)	合计 (kw)	实际铭牌动力效率 (kg(0₂)/kwh)
鼓风机	75	3	75× 3-20. 4=204. 6	225+30=	$\frac{220.2}{204.6} = 1.08$
GW 射流器	815/3000*75=20.4	1		255	73.8
(风机、 水泵)	30	1	50. 4		$\frac{73.8}{50.4} = 1.46$

结论 3、

从GW射流器改造前后的监测数据处理分析结果和能耗及实际铭牌 动力效率分析看出,GW射流曝气具有以下优势:

- (1)整个曝气系统的动力效率增加,能耗降低,总使用装机功率 由 300kw降低到 255kw;
- (2)GW射流曝气设备氧利用率为 30.8%, 现有鼓风曝气设备氧利用 率为 9.15%, GW射流曝气设备氧利用率是现有鼓风曝气设备氧利用率的 3.4倍;
- (3) 曝气池的溶解氧由改造前的 0.15~1.5mg/L提高到 1.3~ 5 mg/L;
- (4) GW射流曝气综合实际铭牌动力效率为 1.46kg(0₂)/kwh, 相对 现有鼓风曝气系统实际铭牌动力效率 $1.08 \text{kg}(0_2)/\text{kwh}$ 提高了 0.38kg(O₂)/kwh。GW射流曝气设备动力效率是现有鼓风曝气设备动力效率的 1.35 倍。这也证实了采用GW射流曝气方式,可使总使用装机功率降低 15%, 由 300kw降低到 255kw。